精选教学计划范文集锦10篇
时间过得可真快,从来都不等人,成绩已属于过去,新一轮的工作即将来临,为此需要好好地写一份计划了。可是到底什么样的计划才是适合自己的呢?以下是小编整理的教学计划10篇,欢迎大家借鉴与参考,希望对大家有所帮助。
教学计划 篇1教学内容:
一元二次方程的根与系数的关系
教学目标:
知识与技能目标:掌握一元二次方程的根与系数的关系并会初步应用. 过程与方法目标:培养学生分析、观察、归纳的能力和推理论证的能力. 情感与态度目标:1.在探究中得出结论,获取成功的体验,激发学习热情,建立自信心。
2.培养学生去发现规律的积极性及勇于探索的精神.
教学重、难点:
重点:根与系数的关系及其推导。
难点:正确理解根与系数的关系,灵活运用根与系数的关系。
教学程序设计:
一、复习引入:
1、写出一元二次方程的一般式和求根公式.
请两位同学写在黑板上,其他同学在纸上默写,交换检查,互相更正。对出错严重之处加以强调。
2、解方程①x2-5x+6=0,②-2x2-x+3=0.
观察、思考两根和、两根积与系数的关系.
提问:所有的一元二次方程的两个根都有这样的规律吗?
观察、思考两根和、两根积与系数的关系.
在教师的引导和点拨下,由学生大胆猜测,得出结论。
二、探究新知
推导一元二次方程两根和与两根积和系数的关系.
设x1、x2是方程ax2+bx+c=0(a≠0)的两个根.试计算(1)x1+x2(2)x1*x2 一名学生在板书,其它学生在练习本上推导.过程略。
由此得出,一元二次方程的根与系数的关系:
结论1.如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么:
bcx1?x2??,x1?x2? aa
教师举例说明,学生理解记忆。
1、验根.
(口答)判定下列各方程后面的两个数是不是它的两个根.
(1)x2-6x+7=0; (-1,7)
(2)-3x2-5x+2=0; (5/3,-2/3)
(3)x2+9=6x (3,3)
要求:学生先思考,再举手抢答,调动学习气氛。
注意:①将方程化为标准形式
②计算准确,公式要用对
2、已知方程一根,求另一根.
例:已知方程5x2+kx-6=0的根是2,求它的另一根及k的值.
先由学生用自己的办法解答,老师巡视后,请具有代表性的解法的同学将解法板书在黑板上,经点评后,有同学评价各种解法的优劣,学生进行比较,体验方法的优越性,从而认识到根与系数关系的应用价值。
小结:
验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:(1)要先把一元二次方程化成一般形式,(2)注意符号
3、(口答)下列方程中,两根的和与两根的积各是多少?
(1)x2-2x+1=0;(2)x2-9x+10=0;
(3)4x2-7x+1=0;(4)-9x+x2=0;
(5)x2=9
此组练习的目的是更加熟练掌握根与系数的关系.
根据题目的计算难易选择不同层次的学生回答,对答对的同学给与充分的表扬,对答错者应引导其掌握方法,并多给一次机会,让其得以消化和巩固,同时增强学生自信,提高学习积极性。
反思(1)(2)
导出结论2:如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q. 注意:结论1具有一般形式,结论2有时给研究问题带来方便.
三、反馈训练应用提高
已知方程3x2-7x+m=0的根是1,求它的另一根及m的值.
本题培养学生对具体问题的理解能力和分析能力,考查根与系数的关系的灵活运用,在解题过程中,学生可能会出现不同的解法,这时教师应先予以肯定,同时要引导学生比较二者的差异,体现新知的应用价值。
拓展:
已知x1,x2是方程2x2+3x-1=0的两个根,试求:(1)x12x2+x1x22,
(2) (x1+x2)2.
本题的设计要求知识的迁移能力较强,学生在尝试时定会遇到各种阻碍,这正是教师想要达到的效果,只有产生了疑问,有了矛盾的激发,课堂才会更精彩。此时,教师应带领学生进行分析,引导学生联系所学知识,分析所求与已知间的联系,共同探究解决疑难的办法,说明矛盾产生的原因。
四、达标检测
1、关于x的方程ax2?(3a?1)x?2(a?1)?0有两个不相等的实根x1、x2,且有
x1?x1x2?x2?1?a,则a的值是
A.1 B.-1 C.1或-1 D. 2
2、关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2。
(1)求k的取值范围;
(2)如果x1+x2-x1x2
五、小结提高
1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行.它深化了两根的和与积和系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础.
2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力.
六、布置作业
必做题
1212122.已知方程2x2-7x+m=0的根是4,求它的另一根及m的值. 选做题 mx3.方程 2?2mx?m?1?0(m?0)
有一个正根,一个负根,求m的取值范围。
七、板书设计
结论1
例题
一元二次方程根与系数的关系 结论2
上文为大家推荐人教版初三数学一元二次方程的根与系数的关系教学计划模板,希望大家仔细阅读,愿大家生活愉快。
教学计划 篇2书吧是每个班级都拥有的区角,在书吧里面孩子们可以把自己心爱的绘本放在这里,书吧给孩子们创设了良好的看书平台,孩子们在这里可以自由的选择自己喜欢的绘本看书。然而对于小班新入学的孩子们来讲,他们对书吧的认识是陌生的,他们不知道怎么看书,不知道怎么爱书更不知道在书吧里面可以做些什么。小班的孩子犹如一张白纸,上面的色彩斑斓需要老师和家长的共同引导。为了让小班的孩子能够走进书吧,爱上看书,我们可以尝试从以下几方面开始实施。
一、情况分析 ……此处隐藏6801个字……法” 理解异分母分数加减法的算理,并能正确计算;能理解分数加减混合运算的顺序,并能正确计算;能把分数化成有限小数,也能把有限小数化成分数;能结合实际情境,解决简单分数加减法的实际问题。
第三单元“分数乘法” 结合具体情境,在操作活动中,探索并理解分数乘、除法的意义;探索并掌握分数乘、除法的计算方法,并能正确计算;能解决简单的分数乘、除法的实际问题,体会数学与生活的密切联系。
第五单元“分数除法” 了解倒数的意义,会求一个数的倒数。能够正确进行分数混合运算;理解整数的运算律在分数运算中同样适用;结合实际情境,能用多种方法解决简单分数混合运算的实际问题,体会分数混合运算在现实生活中的广泛应用。
第七单元“用方程解决问题” 在列方程的过程中,会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。由于有两个未知数,需要选择设一个未知数为x,再根据两个未知数之间的关系,用字母表示另一个未知数。同时经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。
空间与图形 第二、四单元“长方体(一)(二)” 通过观察、操作等活动,认识长方体、正方体及其基本特征,知道长方体、正方体的展开图;了解体积(包括容积)的含义;认识体积(包括容积)单位,探索并掌握长方体、正方体表面积、体积的计算方法,并能解决简单的实际问题;探索某些不规则物体体积的测量方法;引领学生在观察、操作等活动中,发展动手操作能力和空间观念。 第六单元“确定位置” 能在具体的情境中,用方向和距离来表示物体位置;在具体的情境中,自建参数系确定位置。
统计与概率 第八单元“数据的表示和分析” 学生在这一单元认识学习复式条形统计图和复式折线统计图,感受复式条形统计图和折线统计图的特点;能根据需要选择复式条形统计图、复式折线统计图有效地表示数据;能读懂简单的复式统计图,根据统计结果做出简单的判断和预测,与同伴进行交流。通过实例,理解中位数、众数的意义,会求一组数据的中位数、众数,并解释结果的实际意义。
数学好玩 本单元设置了“象征性”长跑、有趣的折叠、包装的学问三个内容,主要目的鼓励学生从数据中获取尽可能多的有效信息,激发学生学习数学的兴趣,体会数学思想,锻炼思维能力,积累思考经验,开阔眼界。
学生基本情况分析
五年级学生已经在数与代数等基础知识,逻辑思维能力慢慢增强,想象能力丰富,备课时应注意优等生与学困生的具体的情况,养成善于思考的好习惯,让学生在认真书写的基础上培养其责任感。
学期教学目标
1、 结合具体情境,在操作活动中,探索并理解分数加、减、乘、除法的意义;探索并掌握分数加、减、乘、除法的计算方法,并能正确计算;能解决简单的分数加、减、乘、除法的实际问题,体会数学与生活的密切联系。
2、 了解倒数的意义,会求一个数的倒数。
3、 能够正确进行分数混合运算;理解整数的运算律在分数运算中同样适用;结合实际情境,能用多种方法解决简单分数混合运算的实际问题,体会分数混合运算在现实生活中的广泛应用。
4、 通过观察、操作等活动,认识长方体、正方体及其基本特征,知道长方体、正方体的展开图;了解体积(包括容积)的含义;认识体积(包括容积)单位,探索并掌握长方体、正方体表面积、体积的计算方法,并能解决简单的实际问题;探索某些不规则物体体积的测量方法;引领学生在观察、操作等活动中,发展动手操作能力和空间观念。
5、 了解复式条形统计图、复式折线统计图的特点与作用;能根据需要,选择条形统计图、折线统计图直观、有效地表示数据;通过实例,进一步理解平均数的意义,会求一组数据的平均数,并解释结果的实际意义。
能综合运用所学的知识和方法解决实际问题,感受数学在日常生活中的作用;获得一些初步的数学活动经验和方法,发展解决问题和运用数学进行思考的能力;感受数学知识间的相互联系,体会数学的作用;在与同伴合作和交流的过程中,发展数学学习的兴趣和自信心。
各单元教材重难点
分数加减法折纸:1.掌握异分母分数加减的计算方法 能正确计算分数加减混合运算 培养学生的计算能力 能正确进行分数和小数的互化.
长方体(一)教学重点:了解长方体的 几何结构。掌握长方体表 面积的计算方法。 教学难点:灵活计算长方 体的表面积.
分数乘法:教学重点:理解整数与分 数乘法的意义,理解分数乘分数的意义及其计算方法。重点培养分析问题、 解决问题的能力。 教学难点:整数与分数的 乘法的两种意义之间的联系。
长方体(二)教学难点:感受1立方米、1立方厘米以及1升、1毫升的实际意义,能形象地描述这些体积单位实际有多大。
分数除法:教学重点:理解除数是分 数的除法的意义,分数除法的计算方法。重点培养 分析问题、解决问题的能力。 教学难点:把被除数的分数平均分成几份,其中的 每一份都是这个被除数的几分之一,也是所求的商。要结合具体情境与操作来 理解分数除以整数的意 义。除数是分数的除法的 意义,是从被除数中能够 分出多少个除数的角度来理解的。
确定位置:重点:在方格纸上会用数对确定物体的位置。根据方向和距离确定物体位置的方法。 难点:准确理解“南偏东30度”和“东偏南30度”的不同。在具体情境中,能根据不同的观察点来判断方向。
用方程解决问题:教学重点:掌握解列方程解决问题的解题方法。 教学难点:能够快速地分析、找到数量之间的相等 关系,列出方程。
数据的表示与分析:教学重点 复式条形、复式折线统计图的绘制方法与读图能 力;理解平均数的意义,学会求简单数据的平均数 教学难点 根据统计图提出数学问题和作出简单的判断与推测;理解平均数的意义.
主要教学措施
1、转变教学方法。在数学教学中,教师必须将“重视结论”的教学转变为“重视过程”的教学,注重再现知识产生、形成的过程,引导学生去探索、去发现。
2、 在课堂上开展小组合作学习,让学生在一起摆摆、拼拼、说说,让学生畅所欲言,互相交流,减少学生的心理压力,充分发挥学生的主题性,培养学生的创新意识和实践能力。
3、 在教学中注意采用开放式教学,培养学生根据具体情境选择适当方法解决实际问题的意识。如通过一题多解、一题多变、一题多问、一题多编等途径,拓宽学生的知识面,沟通知识之间的内在联系,培养学生的应变能。
4、 练习的安排,要由浅入深,体现层次性。对不同的学生,要有不同的要求和练习,对优生、学困生都要体现有所指导。
5、 增强数学实践活动,让学生认识数学知识与实际生活的关系,使学生感到生活中时时处处有数学,用数学的实际意义来诱发和培养学生热爱数学的情感。
后进生转化措施:培养后进生的自信心。只有树立起后进生的自信心,我们的转化工作才找到了起点。要用科学的方法教育后进生。对后进生多宽容,少责备。要做到“三心”:诚心、爱心、耐心。重视与家庭的联系。